地表层在不同状况下,具有不同的小气候、地形、地质和水分条件,在反复交替的冻融过程中,表现冻土--石环出不同的冰缘作用营力。
(1)与寒冻风化、重力作用有关的冰缘地貌形态
由于节理裂隙中的水分冻结膨胀,致使岩石破裂成岩块,或者因温度变化,使组成岩石的矿物不均一地热胀冷缩,并在内部产生不均匀应力,从而造成岩石破裂和岩块崩落。这一过程被称为寒冻风化作用。经寒冻风化作用破碎崩落的岩块、岩屑,有的停留原处,有的经重力作用再搬运而形成不同地貌形态。
石海:寒冻风化作用产生的大量大小不等的棱角状岩块及岩屑,在地形平缓条件下,大多在原地残留下来,形成碎石覆盖地面,这就是石海。石海是我国青藏高原、高原西部高山及大兴安岭北部冻土区均有分布。发育石海不仅要岩石坚脆、节理发育,如花岗岩、石英岩、玄武岩、石灰岩、硬砂岩、板岩等,而且还要有一定的水热条件,既要有一定的水分,同时温度为0℃上下持续波动的时间要长。显然,年平均气温为0℃的等温线附近具备上述温度条件。我们知道,年平均气温为0℃的等温线出现的海拔高度,随纬度降低而增高。因此,石海出现的海拔高度随纬度降低而增高。如青藏高原北部的昆仑山,现代石海发育在海拔4900~5000米以上的花岗片麻岩山地;而南部喜马拉雅山地区,现代石海出现在5300~5400米的山顶上。
石流坡(也称岩屑坡):石流坡的物质来源及产生与石海大体相似,但二者出现的地貌部位不同。石海多见于平缓的山顶;石流坡出现在山坡。石流坡的岩状、碎屑,除斜坡上经寒冻风化在原地产生外,还有在策略作用下来自山顶的。这样就决定了石流坡的组成物质是上细下粗,坡上方多是岩屑;坡下方主要是粗大岩块。其岩性取决于山顶母岩。石流坡的休止角一般在25~35度,坡面比较平直。石流坡是多年冻土地区常见的一种冰缘地貌形态,在大兴安岭和我国西部高山、高原冻土区有广泛分布,几乎到处可见。
石河:由寒冻风化产生的岩块、岩屑,在重力作用下汇集到斜坡沟槽内,碎石沿沟槽徐徐向下移动,故取名石河。
(2)与冻融分选作用有关的冰缘地貌形态
天然条件下,地表物质常常是粗细混杂的。由于石块和土的导热性能不同,因此冻结速度也各不一样。碎石导热率大,则先冻结,水分就先向碎石附近迁移,并于碎石周围形成冰。水变成冰后体积膨胀,则使碎石产生位移,这样就产生了粗细物质的分异。久而久之,粗细物质相对集中,呈现出各种形态。这一过程被称为冻融分选作用,它可以形成下述冰缘地貌形态。
石环:平缓而又粗细混杂的地表层,经冻融分选作用,使泥土岩屑集中在中间,岩块被排挤到周边,呈多边形或近圆形,形成所谓的石环。形成石环地段地松散层一定是岩块和泥土粗细混杂;要有充足的水分条件,含水量一般要在30%以上;气温在0℃上下波动的持续时间要比较长。石环常见于河漫滩、洪积扇前缘及山前缓坡地带,因为这些地貌部位常常具备石环形成的条件。但也有例外,在中天山海拔3850~3950米的古冰斗底部,曾发现直径1~4米的石环群。为什么石环会在这里出现呢?据考察,这是因为陡峻的冰斗壁,经长期寒冻风化和雪融作用,在冰斗底部堆积了比较丰富的粗细粒物质。同时冰斗内存在积雪,就是夏天也有断续积雪。积雪融化,给石环发育提供了水分条件。
斑土:形成机制和过程与石环十分近似,地表呈现出岩块、岩屑遍布,泥土呈斑装嵌在碎石之间,格外引人注目。有人比喻石环与斑土,是一母双胎,同族姐妹;也人有认为,斑土是石环发育的初级阶段,因此岩块环形显示还不完全。
石条:常常与岩屑坡同时存在,碎石与细粒物质呈条形相间顺坡排列,登高俯视,宛如田野沟。它是由于岩屑坡上的碎石经反复冻融及冻融分选使碎石汇集于低处,又经策略作用碎屑顺坡向下延伸而形成的。
冻胀草环:在地表面构成草皮的多边形或近似圆形,其间裸露,布满岩屑碎石。中间赤黄,周边碧绿,异彩夺目,是冻土区少见的一种冰缘地貌形态。目前对它的形成机制和过程还不十分清楚。人们认为,在草皮破裂处或老鼠洞地点,草皮下部泥土碎石经反复冻融拥出地表形成斑土,斑土继续发展扩大,多个相邻斑土如此发展扩大,最后草皮呈环状排列成草环。
(3)与冻胀作用有关的冰缘地貌形态
土层冻结,其中水分向冻结锋面迁移,产生重分布并变成冰,使原土层体积增大,或使地面抬升的过程,称冻胀作用。
冻胀是造成各类建筑物冻害的主要原因。当地基土层冻结,体积膨胀,建筑物和外部荷载不能克服地基土层冻结的膨胀力时,基础便被抬起。由于各侧基础受力不同,建筑物就要产生裂缝、倾斜,严重者甚至倒塌。
与冻胀过程有联系的冰缘地貌形态有冰椎、冰丘(冻胀丘)、冻胀拔石、泥炭丘、冻胀草丘等。
冰丘(也称冻胀丘):冬天季节融化层,由上而下和由下而上冻结,因过水断面缩小,冻结层上水处于承压状态;同时,冻结过程中水向冻结面迁移而产生聚冰层。随冻结面向下发展,当冻结层上水的压力和冰层膨胀力大于上覆土层强度时,地表就发生隆起,便形成了冰丘。冻胀丘是我国多年冻土地区经常可以见到的一种冰缘地貌类型。它常出现于河漫滩、阶地后缘和山麓地带,以及地形转折地段,冻胀丘底部的直径由几米到几十米,高1~2米,有的可达3~5米。冻胀丘表面经常存在纵横交错的裂缝。开裂后往往有地下水溢出,这是地下水的压力得到释放,冻胀丘也就不再继续发展。冻胀丘按存在时间,可分为一年生和多年生。由冻结层上水补给水的,一般形成一年生冻胀丘;由深部冻结层下水补给的形成多年生冻胀丘。一年生冻胀丘,初冬开始隆起,待季节融化层回冻结束,冻胀丘发育成熟,隆起达到顶峰,春天以后逐渐消失,一年生冻胀丘在我国冻土区分布比较普遍,多年生冻胀丘也有出现。青藏公路62道班的冻胀丘,是多年生冻胀丘的典型代表,也是目前我国已知最大的冰丘。底部直径为40~50米,高达20米,似座小山。它高大罕见,在学术界享有盛名。
泥炭丘:形成机制与冻胀丘相似,不同的是,泥炭丘在形成过程中,水分对聚冰层补给不那么充分,因此泥炭丘冰层较薄而且分散,同时个体也没有冻胀丘那样高大宏伟。泥炭丘常出现在地表植被茂密的山间谷地、低洼地和扇间洼地等湖沼地带。
冰椎:在多年冻土地区,有时老远就可以看到银光闪闪的冰体,这就是冰椎。它的形状、大小变化很大,有的直径2~3米,有的呈现冰坡、冰幔延伸几十米乃至数百米,有时带有几个溢水口。冰椎在冰土地区分布非常普遍,它们常出现于河漫滩、阶地后缘、洪积扇前缘及山麓地带。原因是这些地段常有地下水出露。冬季融化层回冻,地下水压力增大,冲破上覆土层溢出地表,溢出口冰体逐渐增大升高,并呈锥形。溢水边流边冻,并沿原地下水流路延伸,这样就形成了冰椎。冰椎对各种建筑物危害很大。有时,由于路堑边坡截断地下水流,地下水从堑坡上流出,随流随冻,形成堑坡挂冰,甚至冰漫轨道,严重阻塞行车。有时,人们喜欢将房屋修在坡脚下。由于房屋基础切断地下水去路,冬天来临大地封冻,而房屋下因取暖而形成融化盘,致使斜坡地下水在此溢出,导致屋内地板冒水。人们说,这是“水上人家”。
(4)与热融作用有关的冰缘地貌形态
由于天然或人为的因素改变了地表状况,引起季节融化深度加深,导致层状地下冰或高含冰冻土融化,而使地面下陷或改变地表形态的过程被称热融作用。热融可以形成热融滑塌、热融洼地、热融湖、热融沟等。
热融地貌类型多出现在地下冰发育或含冰量较高的平缓坡地、山间谷地、高平原地带。
热融滑塌:这种现象最早发现于青藏高原风火山。养路工人取土修路,使路边斜坡的地下冰层暴露,夏天暴露的冰层融化,使上覆草皮和土层失去支承而塌落下来。冰层融水稀释塌落物质呈流塑状态,在重力作用下缓缓下滑。地下冰层继续融化,上边土层再次塌落,并使新的冰层继续露出。如此往复,经过几个夏天的滑塌,就滑塌到坡顶。
本世纪六十年代初,我国曾有人在风火山一带目睹过热融滑塌发育过程的片断。7~8月间的十来天,就有一块土层塌落下来,一个夏天塌落了6~7次。这一过程是由于冰层融化,上覆土层一块一块地塌落的,故取名热融滑塌。青藏公路其它地段、天山,以及大兴安岭冻土区也曾见过上述现象,但由于地下冰层厚度不大,其规模还不及风火山地区。
热融滑塌垮落的土体呈流塑状态,顺坡向下蠕动,土流常常覆盖路面,阻塞行车,严重地段需采取工程措施进行拦截片。
热融洼地、热融湖:由于天然或人为因素(铲除草皮、砍伐森林等)的影响,地下冰层融化,使地表沉陷成的负地形,被称为热融洼地;地下冰层融化,融水渗浸进入或地表水汇聚于洼地,便形成了热融湖。
热融洼地和热融湖在我国多年冻土区有广泛分布,特别是青藏公路沿线的楚马尔河高平原上更为多见。有人认为,高平原上热融湖的形成,可能与几千年前全球气候转暖,造成冻土上限下降,地下冰层融化有关。
(5)与融冻蠕流作用有关的冰缘地貌形态
由高含冰量细粒土构成的缓坡,在融化季节冻土融化使土层呈流塑状态,并在重力作用下,沿冻土层面顺坡向下缓缓蠕动下滑,这种过程称为冻融蠕作用。沿坡徐徐蠕动下滑的融土层,依坡度、坡形可形成融冻蠕流阶地、泥石舌、泥流扇等。
融冻蠕流阶地(融冻泥流阶地):它常出现在地下冰发育的缓坡上,地面坡度一般为15~20度。顺直坡面对融冻泥流阶地形成最为有利。青藏高原风火山地区,这里地表以下是厚2~4米的亚粘土,含冰量大,并且层状地下冰发育,为泥流阶地和泥流舌形成提供了有利的条件。风火山垭口盆地发育有12级大型融冻泥流阶地,阶面宽5~12米,总长达150多米。如此多级的大型泥流阶地,在其它冻土区还未见过。
泥流舌、泥流坡坎:形成过程和产生机制与融冻泥流阶地大致相同。不同的是泥流舌、泥流坡坎形成的坡度要更大一些,一般在25~30度。同时,泥流舌及泥流坡坎的发生,除本身在策略作用下徐徐蠕动以外,来自上方坡面的降水表流衡释融土层,也促使它向下流动。因此,泥流舌的发育过程比融冻蠕流阶地要快,具有一定的突发性,同时分布也比较广泛。不过,在大兴安岭冻土区,森林植被根系使融化层增强了正体性,对融冻蠕流起了相当的抑制作用。因此,这里泥流阶地和泥流舌比较少见。
融冻褶皱(冰卷泥):在融冻泥流阶地、泥流舌及泥流坡坎的形成过程中,当融化层向下滑动时,靠近冻土界面的融土受到冻土面的粘连,而滑动速度小;相反,融化层上部受阻力小向下滑动速度较大。这样,在下滑体速度出现了上快下慢现象,因此下滑融化层产生褶皱变形,故此取各融冻褶皱。融冻褶皱是融冻蠕流过程中,融化层滑动时结构变形的结果,因此地表面一般不易发现。只有在融冻泥流阶地、泥流舌及泥流坡坎的剖面上才能看到这种现象。
(6)与寒冻劈裂有关的冰缘地貌形态
冬天,在我国北方,人们经常会看到地面出现一些宽度不等的裂缝,有时纵横交叉,这些裂缝就是由寒冻劈裂作用形成的。
土层在负温条件下体积发生收缩,由于土层在不同深度处的温度不同,而体积变化也不同,因此便产生收缩应力。在这种应力作用下,土体便会开裂,这一开裂过程被称为寒冻劈裂,也有人称它为冻裂。寒冻劈裂所产生的裂缝宽度和延长深度和土层的温度梯度、水分状况和成岩程度等有着密切的关系。
以寒冻劈裂为基础,再经反复冻结与融化,便可形成土脉、砂楔、冰楔(脉冰)及冰楔假型。它们的共同特征是在地面形成多边形裂缝,因此统称多边形构造。多边形构造的直径大小不等,小者4~5米,大者20~30米,还有更大的。土脉和砂楔延续深度一般不超过季节融化层;冰楔和冰楔假型可穿过季节融化层延深到多年冻土层内。在苏联西伯利亚北部,可以见到长达20~30米的脉体。
土脉和砂楔:土脉和砂楔是在寒冻劈裂基础上,经反复冻融或者风的堆积作用而形成的,但二者形成的环境有较大的差别。土脉多在湿冷环境条件下形成。地表潮湿,季节融化层的含冰量较大;砂楔多产生在干冷环境条件下,风的作用比较强,季节融化后的含冰量很少。寒冻劈裂夏天若被水充填,冬天水冻结成冰,便形成了季节性冰楔。由于水变成冰后体积增大,因此使寒冻劈裂扩宽加深。春夏季裂缝内冰体融化,部分裂缝空腔被围岩充填,次年冬天,裂缝聚积水又冻结成冰楔,裂缝再次扩宽并往下延深。如此多年,便形成了土脉。如地表温度条件无大的波动,土脉延深到季节融化层底部停止了发展。到目前为止,在我国多年冻土地区正在发展的土脉还没有发现。不过,已经停止生长的土脉还是很多的。不仅在多年冻土地区有,而且在广大季节冻土地区也有分布。例如,近几年通过野外调查,在黄土高原的定边、神池,大同,以及东北的吉林、辽宁北部等地都曾发现过土脉和砂楔。砂楔的发育过程与土脉不同。由于它形成在干冷气候环境,风的作用强烈,裂缝内没有水而被砂子育填。冬天来了,裂缝在收缩应力的作用下,再次开裂,之后又被砂充填,如此反复,便形成了砂楔。青藏高原近几年发现许多砂楔,有的已停止发展;有的砂楔中间还存在着裂缝,说明它还在发育成长。据国外研究,不同的土质在寒冻劈裂时对温度条件要求各不相同。土质愈粗,含水愈少,则开裂所需的温度愈低。一般情况下,泥炭土、亚粘土及淤泥质亚砂土,开裂所需的年均地温为-1~-2℃;粉质亚砂土、粉砂及细砂,开裂所需的年均地温为-2~-4℃;中粗砂及砂砾,则要在-5~-8℃开裂。
脉冰(冰楔)及冰楔假型:脉冰是土脉的进一步发展。当地表温度很低,寒冻劈裂贯入季节融化层以下时,夏天上部季节融化层融水浸入冻土上限以下裂劈,继后冻结成冰。次年夏天,季节融化层融化,并有融水浸入,经如此反复冻结与融化,脉冰逐渐增宽和向下发展。在地表温度比较稳定的情况下,脉冰侵入到一定深度时就不再往下发展,此时脉冰发育进入成熟阶段。有地表松散层逐年堆积的条件下,随土层加积,冻土上限逐渐抬升,脉冰随之向上增长。在这种情况下,就是地表温度较稳定时,脉冰长度仍要逐年增大。苏联西伯利亚西部20~30米长的脉块,大多是在地表土层加积条件下形成的。近年来,曾先后在大兴安岭伊图里河及西昆仑山发现脉块。它们的个体不大,脉冰上宽0.1~0.3米,延续深度到冻土上限以下1.0米左右。目前这些脉冰大都停止生长,据冰体中亚粘土块测年,属于距今3000年寒冷期的产物。由于气温升高,或是地表水淹没等原因,造成冻土退化,脉冰消融,脉冰空腔被塌落的围岩和上部土脉充填,这样便形成了冰楔假)。从外形上看,冰楔假型与土脉、砂楔很相似,但仔细观察,二者则有不同。冰楔假型个体大,而且延续到冻土上限以下;土脉、砂楔个体小,延深一般不超过季节融化层。冰楔假型在季节融化层呈锅底状断面,在冻土上限以下呈楔状断面;土脉及砂楔多呈单一的楔状断面。冰楔假型往往存在明显的塌落构造和围岩滑向楔内的痕迹;土脉围岩有时也能看到滑向楔内的痕迹,但不像冰楔假型那么明显,同时弯曲度也不大。由于脉冰延深到冻土上限以下。因此,脉冰形成的温度要比土脉及砂楔更低。对于细粒土(泥炭土、亚粘土、亚砂土)来说,其中形成冰楔所需的年均地温为-4~-5℃;粗粒土(中粗砂及砂砾石)中形成冰楔所需的年均地温,则为-6~-10℃。